Contiki-Inga 3.x
Modules | Files | Data Structures | Macros | Typedefs | Functions | Variables
uIP IPv6 specific features

The uIP IPv6 stack provides new Internet communication abilities to Contiki. More...

Modules

 RPL implementation ContikiRPL (RFC 6550).
 
 IPv6 Neighbor cache (link-layer/IPv6 address mapping)
 Data structure and methods for IPv6 Neighbor Cache (RFC 4861, section 5.1)
 
 Routing
 
 Network interface and stateless autoconfiguration (RFC 4862)
 
 Neighbor discovery (RFC 4861)
 

Files

file  rpl-ext-header.c
 
    Management of extension headers for ContikiRPL.

 
file  rpl-icmp6.c
 
    ICMP6 I/O for RPL control messages.

 
file  rpl-mrhof.c
 
    The Minimum Rank with Hysteresis Objective Function (MRHOF)

 
file  rpl-of0.c
 
    An implementation of RPL's objective function 0.

 
file  rpl-timers.c
 
    RPL timer management.

 
file  uip-ds6.c
 
    IPv6 data structures handling functions.

 
file  uip-icmp6.c
 
    ICMPv6 echo request and error messages (RFC 4443)

 
file  uip-icmp6.h
 
    ICMPv6 echo request and error messages (RFC 4443)

 
file  uip6.c
 
    The uIP TCP/IPv6 stack code.

 

Data Structures

struct  uip_icmp6_error
 ICMPv6 Error message constant part. More...
 

Macros

#define UIP_ICMP6_ECHO_REQUEST_LEN   4
 Echo Request constant part length.
 
#define UIP_ICMP6_ERROR_LEN   4
 ICMPv6 Error message constant part length.
 
#define UIP_ND6_OPT_HDR_BUF   ((uip_nd6_opt_hdr *)&uip_buf[uip_l2_l3_icmp_hdr_len + nd6_opt_offset])
 Pointer to ND option.
 

Typedefs

typedef struct uip_icmp6_error uip_icmp6_error
 ICMPv6 Error message constant part.
 

Functions

enum rpl_mode rpl_get_mode (void)
 Get the RPL mode. More...
 
enum rpl_mode rpl_set_mode (enum rpl_mode m)
 Set the RPL mode. More...
 
void uip_ds6_neighbors_init (void)
 Initialize neighbor cache. More...
 
uip_ds6_nbr_tuip_ds6_nbr_add (const uip_ipaddr_t *ipaddr, const uip_lladdr_t *lladdr, uint8_t isrouter, uint8_t state)
 Adds a neighbor to the neighbor cache. More...
 
void uip_ds6_nbr_rm (uip_ds6_nbr_t *nbr)
 Removes entry from neighbor cache.
 
const uip_ipaddr_t * uip_ds6_nbr_get_ipaddr (const uip_ds6_nbr_t *nbr)
 Returns IP address of neighbor.
 
const uip_lladdr_tuip_ds6_nbr_get_ll (const uip_ds6_nbr_t *nbr)
 Returns link-local address of neighbor.
 
int uip_ds6_nbr_num (void)
 ?
 
uip_ds6_nbr_tuip_ds6_nbr_lookup (const uip_ipaddr_t *ipaddr)
 Lookup if a neighbor cache entry for given IP address exists. More...
 
uip_ds6_nbr_tuip_ds6_nbr_ll_lookup (const uip_lladdr_t *lladdr)
 Lookup if a neighbor cache entry for given link-layer address exists. More...
 
uip_ipaddr_t * uip_ds6_nbr_ipaddr_from_lladdr (const uip_lladdr_t *lladdr)
 Returns IP address associated with link-local address, based on neighbor cache entry. More...
 
const uip_lladdr_tuip_ds6_nbr_lladdr_from_ipaddr (const uip_ipaddr_t *ipaddr)
 Returns link-layer address associated with IP address, based on neighbor cache entry. More...
 
void uip_ds6_link_neighbor_callback (int status, int numtx)
 ?
 
void uip_ds6_neighbor_periodic (void)
 ?
 
uip_ds6_nbr_tuip_ds6_get_least_lifetime_neighbor (void)
 This searches inside the neighbor table for the neighbor that is about to expire the next. More...
 
void uip_ds6_init (void)
 Initialize data structures.
 
void uip_ds6_periodic (void)
 Periodic processing of data structures.
 
uint8_t uip_ds6_list_loop (uip_ds6_element_t *list, uint8_t size, uint16_t elementsize, uip_ipaddr_t *ipaddr, uint8_t ipaddrlen, uip_ds6_element_t **out_element)
 Generic loop routine on an abstract data structure, which generalizes all data structures used in DS6.
 
void uip_ds6_select_src (uip_ipaddr_t *src, uip_ipaddr_t *dst)
 Source address selection, see RFC 3484.
 
void uip_ds6_set_addr_iid (uip_ipaddr_t *ipaddr, uip_lladdr_t *lladdr)
 set the last 64 bits of an IP address based on the MAC address
 
uint8_t get_match_length (uip_ipaddr_t *src, uip_ipaddr_t *dst)
 Get the number of matching bits of two addresses.
 
void uip_ds6_send_rs (void)
 Send periodic RS to find router.
 
uint32_t uip_ds6_compute_reachable_time (void)
 Compute the reachable time based on base reachable time, see RFC 4861.
 
uint16_t uip_chksum (uint16_t *data, uint16_t len)
 Calculate the Internet checksum over a buffer. More...
 
uint16_t uip_ipchksum (void)
 Calculate the IP header checksum of the packet header in uip_buf. More...
 
uint16_t uip_icmp6chksum (void)
 Calculate the ICMP checksum of the packet in uip_buf. More...
 
void uip_init (void)
 uIP initialization function. More...
 
void uip_process (uint8_t flag)
 process the options within a hop by hop or destination option header More...
 
uint16_t uip_htons (uint16_t val)
 Convert a 16-bit quantity from host byte order to network byte order. More...
 
void uip_send (const void *data, int len)
 Send data on the current connection. More...
 

Variables

struct etimer uip_ds6_timer_rs
 Timer for maintenance of data structures.
 

"DS6" Data structures

number of rs already sent

uip_ds6_netif_t uip_ds6_if
 
uip_ds6_prefix_t uip_ds6_prefix_list [UIP_DS6_PREFIX_NB]
 The single interface.
 
uint8_t uip_ds6_addr_size
 Prefix list.
 
uint8_t uip_ds6_netif_addr_list_offset
 

ICMPv6 message types

#define ICMP6_DST_UNREACH   1
 dest unreachable
 
#define ICMP6_PACKET_TOO_BIG   2
 packet too big
 
#define ICMP6_TIME_EXCEEDED   3
 time exceeded
 
#define ICMP6_PARAM_PROB   4
 ip6 header bad
 
#define ICMP6_ECHO_REQUEST   128
 Echo request.
 
#define ICMP6_ECHO_REPLY   129
 Echo reply.
 
#define ICMP6_RS   133
 Router Solicitation.
 
#define ICMP6_RA   134
 Router Advertisement.
 
#define ICMP6_NS   135
 Neighbor Solicitation.
 
#define ICMP6_NA   136
 Neighbor advertisement.
 
#define ICMP6_REDIRECT   137
 Redirect.
 
#define ICMP6_RPL   155
 RPL.
 
#define ICMP6_PRIV_EXP_100   100
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_101   101
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_200   200
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_201   201
 Private Experimentation.
 
#define ICMP6_ROLL_TM   ICMP6_PRIV_EXP_200
 ROLL Trickle Multicast.
 

ICMPv6 Destination Unreachable message codes

#define ICMP6_DST_UNREACH_NOROUTE   0
 no route to destination
 
#define ICMP6_DST_UNREACH_ADMIN   1
 administratively prohibited
 
#define ICMP6_DST_UNREACH_NOTNEIGHBOR   2
 not a neighbor(obsolete)
 
#define ICMP6_DST_UNREACH_BEYONDSCOPE   2
 beyond scope of source address
 
#define ICMP6_DST_UNREACH_ADDR   3
 address unreachable
 
#define ICMP6_DST_UNREACH_NOPORT   4
 port unreachable
 

ICMPv6 Time Exceeded message codes

#define ICMP6_TIME_EXCEED_TRANSIT   0
 ttl==0 in transit
 
#define ICMP6_TIME_EXCEED_REASSEMBLY   1
 ttl==0 in reass
 

ICMPv6 Parameter Problem message codes

#define ICMP6_PARAMPROB_HEADER   0
 erroneous header field
 
#define ICMP6_PARAMPROB_NEXTHEADER   1
 unrecognized next header
 
#define ICMP6_PARAMPROB_OPTION   2
 unrecognized option
 

ICMPv6 RFC4443 Message processing and sending

typedef void(* uip_icmp6_echo_reply_callback_t )(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data, uint16_t datalen)
 
void uip_icmp6_echo_request_input (void)
 \ brief Process an echo request More...
 
void uip_icmp6_error_output (uint8_t type, uint8_t code, uint32_t param)
 Send an icmpv6 error message. More...
 
void uip_icmp6_send (const uip_ipaddr_t *dest, int type, int code, int payload_len)
 Send an icmpv6 message. More...
 
void uip_icmp6_echo_reply_input (void)
 \ brief Process an echo reply More...
 
void uip_icmp6_echo_reply_callback_add (struct uip_icmp6_echo_reply_notification *n, uip_icmp6_echo_reply_callback_t c)
 Add a callback function for ping replies. More...
 
void uip_icmp6_echo_reply_callback_rm (struct uip_icmp6_echo_reply_notification *n)
 Remove a callback function for ping replies. More...
 

Pointers to the header structures.

All pointers except UIP_IP_BUF depend on uip_ext_len, which at packet reception, is the total length of the extension headers.

The pointer to ND6 options header also depends on nd6_opt_offset, which we set in each function.

Care should be taken when manipulating these buffers about the value of these length variables

#define UIP_IP_BUF   ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])
 Pointer to IP header.
 
#define UIP_ICMP_BUF   ((struct uip_icmp_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 Pointer to ICMP header.
 
#define UIP_ND6_RS_BUF   ((uip_nd6_rs *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_RA_BUF   ((uip_nd6_ra *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_NS_BUF   ((uip_nd6_ns *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_NA_BUF   ((uip_nd6_na *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 

Layer 2 variables

uip_lladdr_t uip_lladdr = {{0x00,0x06,0x98,0x00,0x02,0x32}}
 Host L2 address.
 

Layer 3 variables

uint8_t * uip_next_hdr
 Type of the next header in IPv6 header or extension headers. More...
 
uint8_t uip_ext_bitmap = 0
 bitmap we use to record which IPv6 headers we have already seen
 
uint8_t uip_ext_len = 0
 length of the extension headers read. More...
 
uint8_t uip_ext_opt_offset = 0
 length of the header options read
 

Buffer defines

#define FBUF   ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
 
#define UIP_IP_BUF   ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])
 
#define UIP_ICMP_BUF   ((struct uip_icmp_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_UDP_BUF   ((struct uip_udp_hdr *)&uip_buf[UIP_LLH_LEN + UIP_IPH_LEN])
 
#define UIP_TCP_BUF   ((struct uip_tcp_hdr *)&uip_buf[UIP_LLH_LEN + UIP_IPH_LEN])
 
#define UIP_EXT_BUF   ((struct uip_ext_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_ROUTING_BUF   ((struct uip_routing_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_FRAG_BUF   ((struct uip_frag_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_HBHO_BUF   ((struct uip_hbho_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_DESTO_BUF   ((struct uip_desto_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_EXT_HDR_OPT_BUF   ((struct uip_ext_hdr_opt *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_EXT_HDR_OPT_PADN_BUF   ((struct uip_ext_hdr_opt_padn *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_EXT_HDR_OPT_RPL_BUF   ((struct uip_ext_hdr_opt_rpl *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_ICMP6_ERROR_BUF   ((struct uip_icmp6_error *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 

Buffer variables

uip_buf_t uip_aligned_buf
 Packet buffer for incoming and outgoing packets.
 
void * uip_appdata
 Pointer to the application data in the packet buffer. More...
 
void * uip_sappdata
 
uint16_t uip_len
 The length of the packet in the uip_buf buffer. More...
 
uint16_t uip_slen
 

General variables

uint8_t uip_flags
 
struct uip_connuip_conn
 Pointer to the current TCP connection. More...
 

TCP defines

#define TCP_FIN   0x01
 
#define TCP_SYN   0x02
 
#define TCP_RST   0x04
 
#define TCP_PSH   0x08
 
#define TCP_ACK   0x10
 
#define TCP_URG   0x20
 
#define TCP_CTL   0x3f
 
#define TCP_OPT_END   0 /* End of TCP options list */
 
#define TCP_OPT_NOOP   1 /* "No-operation" TCP option */
 
#define TCP_OPT_MSS   2 /* Maximum segment size TCP option */
 
#define TCP_OPT_MSS_LEN   4 /* Length of TCP MSS option. */
 

Detailed Description

The uIP IPv6 stack provides new Internet communication abilities to Contiki.

This document describes Ipv6 specific features. For features that are common to the IPv4 and IPv6 code please refer to uIP.


Introduction

Ipv6 is to replace IPv4 in a near future. Indeed, to move to a real Internet of Things a larger address space is required. This extended address space (2^128 instead of 2^32) is one of the key features of IPv6 together with its simplified header format, its improved support for extensions and options, and its new QoS and security capabilities.

The uip IPv6 stack implementation targets constrained devices such as sensors. The code size is around 11.5Kbyte and the RAM usage around 1.7Kbyte (see below for more detailed information). Our implementation follows closely RFC 4294 IPv6 Node Requirements whose goal is to allow "IPv6 to function well and interoperate in a large number of situations and deployments".

The implementation currently does not support any router features (it does not forward packets, send RAs...)


IPv6 Protocol Implementation

This section gives a short overview of the different protocols that are part of the uIP IPv6 stack. A complete description can be found in the corresponding IETF standards which are available at http://www.ietf.org/rfc.html.

Note
The #UIP_CONF_IPV6 compilation flag is used to enable IPv6 (and disable IPv4). It is also recommended to set UIP_CONF_IPV6_CHECKS to 1 if one cannot guarantee that the incoming packets are correctly formed.

IPv6 (RFC 2460)

The IP packets are processed in the uip_process function. After a few validity checks on the IPv6 header, the extension headers are processed until an upper layer (ICMPv6, UDP or TCP) header is found. We support 4 extension headers:

The IPv6 header, extension headers, and options are defined in uip.h.

Although we can receive packets with the extension headers listed above, we do not offer support to send packets with extension headers.

Fragment Reassembly
This part of the code is very similar to the IPv4 fragmentation code. The only difference is that the fragmented packet is not assumed to be a TCP packet. As a result, we use a different timer to time-out reassembly if all fragments have not been received after UIP_REASS_MAXAGE = 60s.

Note
Fragment reassembly is enabled if #UIP_CONF_REASSEMBLY is set to 1.
We can only reassemble packet of at most UIP_LINK_MTU = 1280 bytes as we do not have larger buffers.

Interface and Addressing (RFC 4291, RFC 4861 p.51, RFC 4862 p.10)

An IPv6 address has 128 bits and is defined as follows:

typedef union uip_ip6addr_t {
uint8_t u8[16]
uint16_t u16[8];
} uip_ip6addr_t;

We assume that each node has a single interface of type #uip_netif.

Each interface can have up to #UIP_NETIF_MAX_ADDRESSES unicast IPv6 addresses including its link-local address. It also has a solicited-node multicast address. We assume that the unicast addresses are obtained via stateless address autoconfiguration so that the solicited-node address is the same for all the unicast addresses. Indeed, the solicited-node multicast address is formed by combining the prefix FF02::1:FF00:0/104 and the last 24-bits of the corresponding IPv6 address. When using stateless address autoconfiguration these bits are always equal to the last 24-bits of the link-layer address.

Multicast support

We do not support applications using multicast. Nevertheless, our node should join the all-nodes multicast address, as well as its solicited-node multicast address. Joining the all-nodes multicast address does not require any action. Joining the solicited-node multicast address is done using Multicast Listener Discovery (MLD or MLDv2). More exactly, the node should send a MLD report packet. However this step can be safely skipped and we do so.

Neighbor Discovery (RFC 4861)

"IPv6 nodes on the same link use Neighbor Discovery to discover each other's presence, to determine each other's link-layer addresses, to find routers, and to maintain reachability information about the paths to active neighbors" (citation from the abstract of RFC 4861).

Note
In IPv6 terminology, a link is a communication medium over which nodes can communicate at the link layer, i.e., the layer immediately below IP (e.g.: ethernet, 802.11, etc.). Neighbors are thus nodes attached to the same link.

Neighbor Discovery (ND) replaces ARP in IPv4 but does much more.

Neighbor discovery messages

The structures corresponding to the different message headers and options are in uip-nd6.h. The functions used to send / process this messages are also described in uip-nd6.h although the actual code is in uip-nd6-io.c.

Neighbor discovery structures
We use the following neighbor discovery structures (declared in uip-nd6.c):

Each of this structure has its own add, remove and lookup functions. To update an entry in a ND structure, we first do a lookup to obtain a pointer to the entry, we then directly modify the different entry fields.

Neighbor discovery processes

Stateless Address Autoconfiguration (RFC 4862)

RFC 4862 defines two main processes:

When an interface becomes active, its link-local address is created by combining the FE80::0/64 prefix and the interface ID. DAD is then performed for this link-local address. Available routers are discovered by sending up to #UIP_ND6_MAX_RTR_SOLICITATIONS RS packets. Address autoconfiguration is then performed based on the prefix information received in the RA. The interface initialization is performed in #uip_netif_init.

ICMPv6 (RFC 4443)

We support ICMPv6 Error messages as well as Echo Reply and Echo Request messages. The application used for sending Echo Requests (see ping6.c) is not part of the IP stack.

Note
RFC 4443 stipulates that 'Every ICMPv6 error message MUST include as much of the IPv6 offending (invoking) packet as possible'. In a constrained environment this is not very resource friendly.

The ICMPv6 message headers and constants are defined in uip-icmp6.h.


IPv6 Timers and Processes

The IPv6 stack (like the IPv4 stack) is a Contiki process

PROCESS(tcpip_process, "TCP/IP stack");

In addition to the periodic timer that is used by TCP, five IPv6 specific timers are attached to this process:

Both #uip_nd6_timer_periodic and #uip_netif_timer_periodic run continuously. This could be avoided by using callback timers to handle ND and Netif structures timeouts.


Compile time flags and variables

This section just lists all IPv6 related compile time flags. Each flag function is documented in this page in the appropriate section.

/*Boolean flags*/
UIP_CONF_IPV6
/*Integer flags*/
UIP_NETIF_MAX_ADDRESSES
UIP_ND6_MAX_PREFIXES
UIP_ND6_MAX_NEIGHBORS
UIP_ND6_MAX_DEFROUTER

IPv6 Buffers

The IPv6 code uses the same single global buffer as the IPv4 code. This buffer should be large enough to contain one packet of maximum size, i.e., UIP_LINK_MTU = 1280 bytes. When fragment reassembly is enabled an additional buffer of the same size is used.

The only difference with the IPv4 code is the per neighbor buffering that is available when #UIP_CONF_QUEUE_PKT is set to 1. This additional buffering is used to queue one packet per neighbor while performing address resolution for it. This is a very costly feature as it increases the RAM usage by approximately #UIP_ND6_MAX_NEIGHBORS * UIP_LINK_MTU bytes.


IPv6 Code Size

Note
We used Atmel's RAVEN boards with the Atmega1284P MCU (128Kbyte of flash and 16Kbyte of SRAM) to benchmark our code. These numbers are obtained using 'avr-gcc 4.2.2 (WinAVR 20071221)'. Elf is the output format.
The following compilation flags were used:
UIP_CONF_IPV6 1
UIP_NETIF_MAX_ADDRESSES 3
UIP_ND6_MAX_PREFIXES 3
UIP_ND6_MAX_NEIGHBORS 4
UIP_ND6_MAX_DEFROUTER 2

The total IPv6 code size is approximately 11.5Kbyte and the RAM usage around 1.8Kbyte. For an additional NEIGHBOR count 35bytes, 25 for an additional PREFIX, 7 for an additional DEFROUTER, and 25 for an additional ADDRESS.


IPv6 Link Layer dependencies

The IPv6 stack can potentially run on very different link layers (ethernet, 802.15.4, 802.11, etc). The link-layer influences the following IP layer objects:

Moreover, tcpip_output should point to the link-layer function used to send a packet. Similarly, the link-layer should call tcpip_input when an IP packet is received.

The code corresponding to the desired link layer is selected at compilation time (see for example the #UIP_LL_802154 flag).


IPv6 interaction with upper layers

The TCP and the UDP protocol are part of the uIP stack and were left unchanged by the IPv6 implementation. For the application layer, please refer to the application program interface.


IPv6 compliance

IPv6 Node Requirements, RFC4294

This section describes which parts of RFC4294 we are compliant with. For each section, we put between brackets the requirement level.
When all IPv6 related compile flags are set, our stack is fully compliant with RFC4294 (i.e. we implemement all the MUSTs), except for MLD support and redirect function support.

Note
RFC4294 is currently being updated by IETF 6man WG. One of the important points for us in the update is that after discussion on the 6man mailing list, IPSec support will become a SHOULD (was a MUST).

Sub IP layer
We support RFC2464 transmission of IPv6 packets over Ethernet
We will soon support RFC4944 transmission of IPv6 packets over 802.15.4

IP layer

DNS (RFC 1034, 1035, 3152, 3363, 3596) and DHCPv6 (RFC 3315) (conditional MUST)
no support

IPv4 Transition mechanisms RFC 4213 (conditional MUST)
no support

Mobile IP RFC 3775 (MAY / SHOULD)
no support

IPSec RFC 4301 4302 4303 2410 2404 2451 3602(MUSTs) 4305 (SHOULD)
no support

SNMP (MAY)
no support

IPv6 certification through ipv6ready alliance

IPv6ready is the certification authority for IPv6 implementations (http://www.ipv6ready.org). It delivers two certificates (phase 1 and phase 2).
When all the IPv6 related compile flags are set, we pass all the tests for phase 1.
We pass all the tests for phase 2 except:


Macro Definition Documentation

#define UIP_ND6_RS_BUF   ((uip_nd6_rs *)&uip_buf[uip_l2_l3_icmp_hdr_len])

Pointers to messages just after icmp header

Definition at line 107 of file uip-nd6.c.

Function Documentation

enum rpl_mode rpl_get_mode ( void  )

Get the RPL mode.

Return values
TheRPL mode

Definition at line 66 of file rpl.c.

enum rpl_mode rpl_set_mode ( enum rpl_mode  mode)

Set the RPL mode.

Parameters
modeThe new RPL mode
Return values
Theprevious RPL mode

Definition at line 72 of file rpl.c.

References NULL.

uint16_t uip_chksum ( uint16_t *  buf,
uint16_t  len 
)

Calculate the Internet checksum over a buffer.

The Internet checksum is the one's complement of the one's complement sum of all 16-bit words in the buffer.

See RFC1071.

Parameters
bufA pointer to the buffer over which the checksum is to be computed.
lenThe length of the buffer over which the checksum is to be computed.
Returns
The Internet checksum of the buffer.

Definition at line 335 of file uip6.c.

References uip_htons().

uip_ds6_nbr_t* uip_ds6_get_least_lifetime_neighbor ( void  )

This searches inside the neighbor table for the neighbor that is about to expire the next.

Returns
A reference to the neighbor about to expire the next or NULL if table is empty.

Definition at line 280 of file uip-ds6-nbr.c.

References NULL, and stimer_remaining().

uip_ds6_nbr_t* uip_ds6_nbr_add ( const uip_ipaddr_t *  ipaddr,
const uip_lladdr_t lladdr,
uint8_t  isrouter,
uint8_t  state 
)

Adds a neighbor to the neighbor cache.

Parameters
ipaddrIP address of the neighbor to add.
lladdrLink-local address of the neighbor (may be unknown when added), NULL if not known (requires state to be set to NBR_INCOMPLETE)
isrouterSet to 1 if neighbor is a router, to 0 if host or unknown
stateState of this entry. Possible values are: NBR_INCOMPLETE, NBR_REACHABLE, NBR_STALE, NBR_DELAY, NBR_PROBE

Definition at line 80 of file uip-ds6-nbr.c.

References NULL, stimer_set(), and uip_ipaddr_copy.

Referenced by tcpip_ipv6_output(), uip_nd6_ns_input(), and uip_nd6_ra_input().

uip_ipaddr_t* uip_ds6_nbr_ipaddr_from_lladdr ( const uip_lladdr_t lladdr)

Returns IP address associated with link-local address, based on neighbor cache entry.

Definition at line 178 of file uip-ds6-nbr.c.

References NULL, and uip_ds6_nbr_ll_lookup().

uip_ds6_nbr_t* uip_ds6_nbr_ll_lookup ( const uip_lladdr_t lladdr)

Lookup if a neighbor cache entry for given link-layer address exists.

Parameters
llpaddrlink-layer address to look up
Returns
NULL if no entry was found, otherwise a pointer to that entry

Definition at line 171 of file uip-ds6-nbr.c.

Referenced by uip_ds6_link_neighbor_callback(), and uip_ds6_nbr_ipaddr_from_lladdr().

const uip_lladdr_t* uip_ds6_nbr_lladdr_from_ipaddr ( const uip_ipaddr_t *  ipaddr)

Returns link-layer address associated with IP address, based on neighbor cache entry.

Definition at line 186 of file uip-ds6-nbr.c.

References NULL, uip_ds6_nbr_get_ll(), and uip_ds6_nbr_lookup().

Referenced by uip_ds6_route_add().

uip_ds6_nbr_t* uip_ds6_nbr_lookup ( const uip_ipaddr_t *  ipaddr)

Lookup if a neighbor cache entry for given IP address exists.

Parameters
ipaddrIP address to look up
Returns
NULL if no entry was found, otherwise a pointer to that entry

Definition at line 156 of file uip-ds6-nbr.c.

References NULL.

Referenced by tcpip_ipv6_output(), uip_ds6_defrt_choose(), uip_ds6_nbr_lladdr_from_ipaddr(), uip_nd6_na_input(), uip_nd6_ns_input(), and uip_nd6_ra_input().

void uip_ds6_neighbors_init ( void  )

Initialize neighbor cache.

Definition at line 74 of file uip-ds6-nbr.c.

References uip_ds6_nbr_rm().

Referenced by uip_ds6_init().

uint16_t uip_htons ( uint16_t  val)

Convert a 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For converting constants to network byte order, use the UIP_HTONS() macro instead.

Definition at line 2347 of file uip6.c.

References UIP_HTONS.

Referenced by mac_LowpanToEthernet(), roll_tm_icmp_input(), uip_chksum(), and uip_ipchksum().

void uip_icmp6_echo_reply_callback_add ( struct uip_icmp6_echo_reply_notification *  n,
uip_icmp6_echo_reply_callback_t  c 
)

Add a callback function for ping replies.

Parameters
nA struct uip_icmp6_echo_reply_notification that must have been allocated by the caller
cA pointer to the callback function to be called
        This function adds a callback function to the list of
        callback functions that are called when an ICMP echo
        reply (ping reply) is received. This is used when
        implementing a ping protocol: attach a callback
        function to the ping reply, then send out a ping packet
        with uip_icmp6_send().

        The caller must have statically allocated a struct
        uip_icmp6_echo_reply_notification to hold the internal
        state of the callback function.

        When a ping reply packet is received, all registered
        callback functions are called. The callback functions
        must not modify the contents of the uIP buffer.

Definition at line 350 of file uip-icmp6.c.

References list_add(), and NULL.

void uip_icmp6_echo_reply_callback_rm ( struct uip_icmp6_echo_reply_notification *  n)

Remove a callback function for ping replies.

Parameters
nA struct uip_icmp6_echo_reply_notification that must have been previously added with uip_icmp6_echo_reply_callback_add()
        This function removes a callback function from the list of
        callback functions that are called when an ICMP echo
        reply (ping reply) is received.

Definition at line 360 of file uip-icmp6.c.

References list_remove().

void uip_icmp6_echo_reply_input ( void  )

\ brief Process an echo reply

Perform a few checks, then call applications to inform that an echo reply has been received.

Definition at line 279 of file uip-icmp6.c.

References list_head(), list_item_next(), NULL, uip_ext_len, UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, and uip_len.

Referenced by uip_process().

void uip_icmp6_echo_request_input ( void  )

\ brief Process an echo request

Perform a few checks, then send an Echo reply. The reply is built here.

Definition at line 80 of file uip-icmp6.c.

References ICMP6_ECHO_REPLY, uip_ds6_select_src(), uip_ext_len, uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, uip_is_addr_mcast, uip_len, and UIP_STAT.

Referenced by uip_process().

void uip_icmp6_error_output ( uint8_t  type,
uint8_t  code,
uint32_t  param 
)

Send an icmpv6 error message.

Parameters
typetype of the error message
codeof the error message
type32 bit parameter of the error message, semantic depends on error

Definition at line 167 of file uip-icmp6.c.

References ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, uip_ds6_select_src(), uip_ext_len, UIP_ICMP6_ERROR_LEN, uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, uip_is_addr_mcast, uip_is_addr_unspecified, uip_len, UIP_LINK_MTU, and UIP_STAT.

Referenced by uip_process().

void uip_icmp6_send ( const uip_ipaddr_t *  dest,
int  type,
int  code,
int  payload_len 
)

Send an icmpv6 message.

Parameters
destdestination address of the message
typetype of the message
codeof the message
payload_lenlength of the payload

Definition at line 254 of file uip-icmp6.c.

References tcpip_ipv6_output(), uip_ds6_select_src(), uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, and uip_len.

uint16_t uip_icmp6chksum ( void  )

Calculate the ICMP checksum of the packet in uip_buf.

Returns
The ICMP checksum of the ICMP packet in uip_buf

Definition at line 386 of file uip6.c.

Referenced by mac_translateIcmpLinkLayer(), uip_icmp6_echo_request_input(), uip_icmp6_error_output(), uip_icmp6_send(), uip_nd6_ns_input(), uip_nd6_ns_output(), uip_nd6_rs_output(), and uip_process().

void uip_init ( void  )

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Definition at line 410 of file uip6.c.

References uip_udp_conn::lport, UIP_CONNS, uip_ds6_init(), UIP_LISTENPORTS, and UIP_UDP_CONNS.

uint16_t uip_ipchksum ( void  )

Calculate the IP header checksum of the packet header in uip_buf.

The IP header checksum is the Internet checksum of the 20 bytes of the IP header.

Returns
The IP header checksum of the IP header in the uip_buf buffer.

Definition at line 342 of file uip6.c.

References uip_htons(), and UIP_LLH_LEN.

void uip_process ( uint8_t  flag)

process the options within a hop by hop or destination option header

Return values
0,:nothing to send,
1,:drop pkt
2,:ICMP error message to send

Call echo reply input function.

Definition at line 918 of file uip6.c.

References ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, ICMP6_DST_UNREACH_NOTNEIGHBOR, ICMP6_ECHO_REPLY, ICMP6_ECHO_REQUEST, ICMP6_NA, ICMP6_NS, ICMP6_PACKET_TOO_BIG, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, ICMP6_PARAMPROB_NEXTHEADER, ICMP6_RA, ICMP6_ROLL_TM, ICMP6_RPL, ICMP6_RS, ICMP6_TIME_EXCEED_TRANSIT, ICMP6_TIME_EXCEEDED, uip_conn::initialmss, uip_conn::len, uip_conn::lport, uip_udp_conn::lport, uip_conn::mss, uip_conn::nrtx, NULL, uip_conn::rcv_nxt, uip_conn::ripaddr, uip_udp_conn::ripaddr, roll_tm_icmp_input(), uip_conn::rport, uip_udp_conn::rport, uip_conn::rto, uip_conn::sa, uip_conn::snd_nxt, uip_conn::sv, uip_conn::tcpstateflags, uip_conn::timer, uip_udp_conn::ttl, uip_add32(), UIP_APPCALL, uip_appdata, uip_conn, UIP_CONNS, uip_ds6_is_my_addr, uip_ds6_is_my_maddr, uip_ds6_select_src(), uip_ext_bitmap, UIP_EXT_HDR_BITMAP_HBHO, uip_ext_len, UIP_HTONS, uip_icmp6_echo_reply_input(), uip_icmp6_echo_request_input(), uip_icmp6_error_output(), uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, uip_is_addr_link_local, uip_is_addr_loopback, uip_is_addr_mcast, uip_is_addr_mcast_routable, uip_is_addr_unspecified, uip_len, UIP_LINK_MTU, UIP_LISTENPORTS, UIP_LLH_LEN, UIP_MAXRTX, UIP_MAXSYNRTX, uip_nd6_na_input(), uip_nd6_ns_input(), uip_nd6_ra_input(), uip_next_hdr, UIP_PROTO_HBHO, UIP_RECEIVE_WINDOW, UIP_RTO, UIP_STAT, UIP_TCP_MSS, uip_tcpchksum(), UIP_TIME_WAIT_TIMEOUT, uip_udp_conn, UIP_UDP_CONNS, and uip_udpchksum().

void uip_send ( const void *  data,
int  len 
)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this function is determined by the maximum amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of data is sent. The function uip_mss() can be used to query uIP for the amount of data that actually will be sent.

Note
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the network, the application will be invoked with the uip_rexmit() event being set. The application will then have to resend the data using this function.
Parameters
dataA pointer to the data which is to be sent.
lenThe maximum amount of data bytes to be sent.

Definition at line 2359 of file uip6.c.

References NULL, UIP_BUFSIZE, and UIP_LLH_LEN.

Variable Documentation

void* uip_appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send data, the application may use this space to write the data into before calling uip_send().

Definition at line 173 of file uip6.c.

Referenced by slipdev_send(), uip_arp_out(), uip_fw_forward(), uip_process(), uip_split_output(), and uip_tcpchksum().

struct uip_conn* uip_conn

Pointer to the current TCP connection.

The uip_conn pointer can be used to access the current TCP connection.

Definition at line 196 of file uip6.c.

uint8_t uip_ext_len = 0

length of the extension headers read.

The length of the extension headers.

updated each time we process a header

Definition at line 136 of file uip6.c.

Referenced by roll_tm_icmp_input(), tcpip_input(), tcpip_ipv6_output(), uip_icmp6_echo_reply_input(), uip_icmp6_echo_request_input(), uip_icmp6_error_output(), uip_nd6_ns_input(), uip_nd6_ns_output(), and uip_process().

uint16_t uip_len

The length of the packet in the uip_buf buffer.

The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the uIP input function, uip_len should be set to the length of the packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the length of the outgoing packet.

Definition at line 184 of file uip6.c.

Referenced by mac_ethernetToLowpan(), mac_LowpanToEthernet(), mac_translateIcmpLinkLayer(), roll_tm_icmp_input(), slipdev_send(), tcpip_input(), tcpip_ipv6_output(), uip_arp_arpin(), uip_arp_out(), uip_ds6_neighbor_periodic(), uip_ds6_periodic(), uip_fw_forward(), uip_fw_output(), uip_icmp6_echo_reply_input(), uip_icmp6_echo_request_input(), uip_icmp6_error_output(), uip_icmp6_send(), uip_nd6_na_input(), uip_nd6_ns_input(), uip_nd6_ns_output(), uip_nd6_ra_input(), uip_nd6_rs_output(), uip_process(), and uip_split_output().

uint8_t* uip_next_hdr

Type of the next header in IPv6 header or extension headers.

Can be the next header field in the IPv6 header or in an extension header. When doing fragment reassembly, we must change the value of the next header field in the header before the fragmentation header, hence we need a pointer to this field.

Definition at line 129 of file uip6.c.

Referenced by uip_process().